Цифровая радиография

Цифровая радиография

Введение
В течение более 100 лет, прошедших после открытия рентгеновских лучей, их применение для неразрушающего контроля основывалось на использовании рентгеновской пленки и специальных пленочных систем (промышленная радиография) и позднее – на использовании рентгенооптических преобразователей (промышленная радиоскопия).

По сути, оба эти метода получения изображений являются аналоговыми, хотя в последнее время с развитием компьютерной техники в промышленной радиографии нашла применение техника оцифровки пленочных изображений с целью уменьшения за трат на содержание архивов, а в промышленной радиоскопии стали применять цифровые телевизионные камеры высокого разрешения. Хотя и ту, и другую технологии можно назвать цифровыми (используется компьютер и специальное программное обеспечение), они не будут являться предметом рассмотрения в настоящей статье. Применение оцифровщиков стало обыденным в практике дефектоскопистов (системы ВидеоРен, Унирен, Марс и др.), а радиоскопия с применением цифровых камер детально рассмотрена в [1].

Целью настоящей работы является рассмотрение цифровых технологий, замещающих пленку с требуемым качеством изображения. Мотивацией замены обычно является уменьшение стоимости вследствие уменьшения времен экспозиции и уменьшения стоимости хранения, уменьшения требуемых рабочих площадей и исключения химии из процесса обработки. Такими технологиями являются:

– компьютерная радиография (КР) с «фосфорными» запоминающими пластинами (ЗП) многоразового использования (кавычки означают, что на самом деле в состав запоминающих пластин химический элемент фосфор не входит [2]);

– цифровая радиография (ЦР) с использованием цифровых детекторных систем ЦДС (плоскопанельных и линейных детекторов). Компьютерная радиография начала использоваться около 20 лет назад в медицине для замены пленки и обладает существенными преимуществами перед пленочной технологией:

– не требует фотолабораторий, химикатов, соответствующего персонала и т. п.;

– каждая пластина может использоваться несколько тысяч раз;

– время экспозиции по сравнению с пленкой в несколько раз меньше;

– изображение архивируется в цифровом виде.

Чтобы конкурировать с пленочными системами, в последние годы разработаны высококачественные системы компьютерной радиографии, имеющие пространственное разрешение и отношение сигнал/шум, сравнимые при соответствующих дозах облучения с пленочными системами неразрушающего контроля.

Цифровая радиография также была использована в первую очередь для замены пленки в медицине. Разработанные для этой цели ЦДС оказали революционизирующее влияние на радиологическую технику. Эти детекторы позволили развить новые, основанные на компьютерных технологиях, приложения. Эти технологические и алгоритмические разработки оказались применимы также и для использования в неразрушающем контроле. Имеются в виду новые технологии калибровки ЦДС, которые позволяют практически полностью избавиться от их собственных шумов. Такие возможности отсутствуют у пленочных систем и систем КР с ЗП. Поэтому ЦДС имеют самый низкий уровень шумов в радиографии и открывают путь к новым приложениям, где требуются чрезвычайно высокие чувствительность и контраст изображения в сочетании с возможностью контроля слабых изменений радиационной толщины. Чрезвычайно важным являются также экономические преимущества ЦДС перед классической пленочной техникой. Гораздо более быстрый процесс обработки и интерпретации при высоком качестве изображения приводит к существенному выигрышу во времени по сравнению с пленкой и/или другими методами неразрушающего контроля.

Целью настоящей статьи является обсуждение возможностей новых цифровых технологий, для чего будет проведено сравнение с возможностями пленочной радиографии. Сравнение начнем с классификации существующих детекторов рентгеновского излучения. Детекторы рентгеновского излучения На рис. 1 представлена схема, иллюстрирующая основные типы детекторов рентгеновского излучения, применяемых для получения изображения.

цифровая радиография
Рентгеновская пленка

Рентгеновская пленка до сих пор является наиболее широко используемым в промышленности детектором рентгеновского излучения в силу хорошо отработанной законодательной базы применения во всех отраслях промышленности, существующей инфраструктуры применения (фотолаборатории, оборудование, обученный персонал и т. п.). Однако объемы применения пленки с каждым годом уменьшаются в связи с развитием новых методов регистрации рентгеновских изображений, о которых речь пойдет дальше.

Запоминающие пластины

В компьютерной радиографии для получения изображения вместо пленки применяются специальные гибкие пластины многократного использования. Кассеты с такими пластинами имеют типовые для рентгеновской пленки размеры, например 18 ? 24, 18 ? 30, 24 ? 30, 35 ? 43 см, а также аналоги рулонных пленок. Возможна также резка пластин, т. е. считывание и других размеров. Для запоминания изображений в пластине использован слой с фотостимулируемой памятью – сложное химическое соединение. Чаще всего используются соединения типа BaFBrxI1-x:Eu2+.

Цифровые детекторы непрямого преобразования рентгеновского излучения

Начнем обсуждение с детекторов непрямого преобразования, как наиболее часто используемых на практике. Они отличаются тем, что рентгеновские кванты сначала взаимодействуют со сцинтиллятором с образованием фотонов света, а затем свет преобразуется или сразу в электрический сигнал, как в твердотельных плоскопанельных детекторах, или в поток электронов в рентгеновском электроннооптическом преобразователе (РЭОП), который создает видимое изображение на выходном люминофорном экране. В качестве плоскопанельных детекторов непрямого преобразования чаще всего используются панели на основе аморфного кремния (аSi). В них используются сцинтилляторы из CsI или Gadolinium Oxisulfide, которые преобразуют рентгеновское излучение в видимый свет. Этот свет затем конвертируется в заряд сенсорами из аморфного кремния (рис. 2). Чувствительность детектора со сцинтиллятором из Gadolinium Oxisulfide будет зависеть от толщины покрытия (рис. 2а). Однако при увеличении толщины покрытия из-за рассеяния света ухудшается пространственное разрешение детектора. В какой-то степени от этого недостатка свободны панели с покрытием из CsI (рис. 2 б). CsI хорошо поглощает рентгеновское излучение, причем в области энергий рентгеновских фотонов, обычно используемых в промышленной дефектоскопии (40 – 300 кэВ), поглощение происходит в основном за счет фотоэффекта (вклад в поглощение за счет эффекта Комптона становится существенным при энергиях выше 300 кэВ). Слой CsI:Na генерирует при поглощении рентгеновского излучения голубой свет, который распространяется по направлению к фотодиодной матрице вдоль монокристаллических острий как по оптоволокну (т. е. без рассеяния).

Ранние эксперименты с аSi показали высокий уровень шума этих панелей. Прогресс в технологии вместе с программными возможностями, позволяющими усреднение по многим кадрам, позволил резко улучшить отношение сигнал/шум. Качество изображений, получаемое сейчас на этих панелях, превышает качество, получаемое на запоминающих пластинах, и приближается к качеству изображения на панелях аSe.

цифровая радиография 3
Более того, панели из аSi менее чувствительны к свойствам окружающей среды, что делает возможным их применение в полевых условиях и неконтролируемых приложениях. На рис. 3 в качестве примера показаны фотографии некоторых широко используемых в практике детекторов.

Цифровые детекторы прямого преобразования рентгеновского излучения

В детекторах прямого преобразования при воздействии рентгеновского кванта в толще полупроводника сразу генерируются электронно-дырочные пары. Под действием приложенного напряжения возникает электронный ток, который может быть усилен и с помощью считывающей электроники преобразован в изображение (рис. 4).

Наиболее распространенными вариантами ЦДС прямого преобразования являются панели на основе аморфного селена (aSe) и монокристаллического теллурида кадмия (CdTe). В первом случае сборка тонкопленочных транзисторов (TFT) покрывается аморфным селеном, что позволяет конвертировать рентгеновское излучение напрямую в цифровой сигнал без использования сцинтилляторов или фосфора. Вследствие отсутствия влияния рассеяния и оптимального отношения сигнал/шум качество изображения достигает качества, характерного для среднезернистой пленки. Ограничением селенового детектора является узкий диапазон рабочих температур. Как для работы, так и при хранении детектор нужно поддерживать в температурном диапазоне 5 – 30 °С для того, чтобы избежать разрушения селенового слоя. Также при высоких энергиях (> 180 кэВ) селен склонен к образованию фантомных изображений.

цифровая радиография 4
Все эти ограничения делают возможным применение aSe панелей в очень специфичных приложениях, где можно строго контролировать необходимые для этих панелей условия работы. Детекторная система прямого преобразования на основе CdTe свободна от ряда недостатков системы на основе aSe. Она может работать в гораздо более широком температурном диапазоне при энергиях рентгеновских квантов до 300 кэВ, обладая при этом в несколько раз большей чувствительностью.

На рис. 5 показан один из типов детекторов прямого преобразования. Технологии формирования и считывания сигналов в ЦДС Механической основой любого плоскопанельного детектора является стеклянная подложка, на которую устанавливается считывающая электроника.

TFT-технология

TFT (thin film transistors)-технология используется в основном в панелях на базе аморфных кремния или селена. Панели детекторов непрямого преобразования являются типичными сборками фотодио- дов на активной TFT-матрице. Для детек- торов с прямым преобразованием, де- текторный слой располагается прямо на эту матрицу. Матрица TFT-транзисторов представляет собой достаточно простую структуру электронных переключателей (типовая схема для любого типа панелей показана на рис. 6). Емкость каждого светодиода в исходном состоянии заряжена до напряжения U+. При облучении светом она разряжается: чем больше света, тем меньше остаточный заряд. При считывании TFT транзистор открывается, и емкость снова заряжается через считывающий усилитель до значения U+. Величина заряда измеряется усилителем считывания и в виде напряжения U подается на аналогоцифровой преобразователь. Панели могут быть очень больших размеров (40 ?40 см). Они имеют не очень высокое разрешение (типичное значение ве- личины пикселя 127 мкм). Отличительной особенностью аморфного кремния является очень высокая радиационная устойчивость, что позволяет применять такие панели при высоких энергиях рентгеновских квантов. Поскольку процесс производства панелей на базе аморфного материала и TFT-технологии требует специфического оборудования и условий производства, такие панели достаточно дороги.

CCD-технология

ССD (coupled charge device)-технология является одной из ведущих для получения высококачественных рентгеновских изображений. В отличие от матричных панелей типа TFT или CMOS, в ССD панелях считывание сигнала происходит путем транспортировки зарядовых пакетов вдоль кремниевой подложки. Преимуществом таких панелей является низкий шум, высокая чувствительность. Обычно в ССD панелях используют оптоволоконные буферные вставки, позволяющие увеличить площадь приемного окна панели и служащие одновременно защитой от радиации. Но даже с таким дополнительным экранированием ССD панели могут работать только при энергиях рентгеновских квантов < 50 кэВ. Как и в случае с аморфным кремнием, их производство требует специальных условий, поэтому они достаточно дороги.

CMOS-технология

CMOS (complementary metal oxide semiconductor) – эта технология, как и TFT с аморфным кремнием, является матричной сборкой. Основным преимуществом этой технологии перед остальными является использование хорошо развитой промышленной базы производства интегральных схем. Уровень шумов CMOS-панелей приблизился к уровню ССD-панелей, динамический диапазон в несколько раз выше. На CMOS-панелях получено самое высокое пространственное разрешение (размер пикселя несколько микрометров). Стоимость таких панелей хотя еще достаточно высока, тем не менее динамично снижается и скоро, на наш взгляд, станет меньше стоимости РЭОП со сравнимыми характеристиками.

продолжение следует.....